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The electric solar wind sail is a propulsion system that uses long centrifugally spanned

and electrically charged tethers to extract the solar wind momentum for spacecraft

thrust. The sail angle with respect to the sun direction can be controlled by modulating

the voltage of each tether separately to produce net torque for attitude control and

thrust vectoring. A solution for the voltage modulation that maintains any realistic sail

angle under constant solar wind is obtained. Together with the adiabatic invariance

of the angular momentum, the tether spin rate and coning angle is solved as functions

of temporal changes in the solar wind dynamic pressure, the tether length, or the

sail angle. The obtained modulation also gives an estimate for the fraction of sail

performance (electron gun power) to be reserved for sail control. We also show that

orbiting around the Sun with a �xed sail angle leads to a gradual increase (decrease) in

the sail spin rate when spiraling outward (inward). This e�ect arises from the fact that

the modulation of the electric sail force can only partially cancel the Coriolis e�ect,

and the remaining component lays in the spin plane having a cumulative e�ect on the

spin rate.
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Nomenclature

A = tether wire cross-sectional area

α = sail angle

e = unit vector

F = force

g = tether voltage modulation

I = tether moment of inertia

l = tether length

L = angular momentum

Λ = sail coning angle

mp = proton mass

nw = solar wind number density

ω = angular velocity

ω̃ = angular frequency

Ω = angular velocity of sail turning

Pdyn = solar wind dynamic pressure

(r, θ, ϕ) = spherical polar coordinates

ρl = tether material linear mass density

ρV = tether material mass density

T = tether root tension

τ = torque

(θw, ϕw) = solar zenith angles

u = solar wind velocity

V = tether voltage

v = velocity
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I. Introduction

The electric solar wind sail was proposed in [1] as a propulsion system that uses the ambient

interplanetary solar wind momentum �ux for spacecraft thrust as inspired by the earlier magnetic

sail concept in [2]. The proposed electric sail consisted of a conducting mesh charged to a high

positive potential to repel the solar wind ions. Later, it was recognized that centrifugally stretched

micro-meteoroid resistant tethers [3] can be used to construct the sail [4, 5]. It was noticed that an

electric �eld potential structure of the spatial range larger than 100 m can be created around a thin

wire with thickness of a few tens of micrometers. While such a construction provided a lightweight

sail with an e�ective area comparable to a mesh, it also suggested a convenient way both to open

the sail in space by reeling out the tethers instead of unfolding the mesh and also to control the sail

spin plane by modulating the voltage of the electrically independent tethers.

The �ight attitude control of a single tether and collectively the sail is a key challenge in electric

sail development. Recently, it was shown that if attitude control is accomplished, the navigation in

real solar wind conditions to planetary targets with an electric sail is feasible [6]. The sail inclination

with respect to the sun-direction can be controlled and altered by modulating the individual tether

voltage synchronously with the sail rotation, resembling helicopter �ight from the algorithmic point

of view. Since the tethers are much longer (up to tens of kilometers) than any realistic spacecraft

radius, the rotation phase of the tether is not stabilized by the centrifugal force as is the case for

the helicopter blades attached to the central plate. Initially, it was envisioned that the individual

tether rotation rate can be controlled by varying the tether length by reeling. This would necessitate

mechanical moving bodies, and as a more attractive option, auxiliary tethers connecting the tether

tips can be added for mechanical stability to the baseline con�guration [7].

The existing thrust law for an in�nitely long positively charged electric sail tether is based on

the studies in [5] and [8]. In general, the thrust force is proportional to the solar wind dynamic

pressure and the e�ective area of the sail and its direction is along the component of the solar

wind that is perpendicular to the tether. The latter feature is a key di�erence in comparison with

the solar sail for which the thrust is perpendicular to the sail surface (assuming fully re�ecting

sail material). Since the tether voltage is much higher than the electron temperature, the Debye
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length is not necessarily the scale size of the tether potential structure. Initially, a particle-in-cell

computer simulation was used to predict the thrust law [5]. Based on these simulation results, the

potential structure scale size is of the order of hundred meters. Later, it was noted that due to

the complex electric �eld structures near the spacecraft, the electron motion becomes chaotic and

the electrons trapped by the wire will be scattered [8]. Such a mechanism e�ectively removes the

trapped electrons. This is, however, di�cult to take into account self-consistently in the original

simulation, and an analytical solution for the thrust law was constructed in [8]. It was argued that

the analytic solution is in good agreement both with the simulation results (except that the thrust

is about 5 times larger than that based on the simulations) and with the study by [9]. Concerning

the present work, since the rotation rate of the sail is a free parameter, possible ambiguities of the

thrust law do not invalidate the results of this paper that depend only on the ratio of the electric

sail and centrifugal forces, i.e., the coning angle of the sail.

The electric sail tether dynamics and control includes a rotating body in a frame of reference

rotating along with the sail orbiting around the Sun and introducing e�ects to the tether rotation

period not necessarily intuitive in the framework of a freely swinging spherical pendulum. In Section

2, we introduce the electric sail thrust law together with coordinate systems to derive the single

tether equation of motion. At this stage, it is adequate to consider a single tether as the Coulomb

interaction between the tethers is weak due to the plasma shielding of the tether potential structures.

An analytic solution for the tether voltage modulation for any tether spin plane orientation relevant

for sail operations is obtained in Section 3 where we also give examples of variation in electric sail

force and tether length tuning. The Coriolis e�ect is considered in Section 4 and examples of turning

of the sail spin plane together with the result of the sail spin period evolution with controlled orbiting

around the Sun are shown. In Sections 3 and 4, we give both the exact analytic solutions and their

approximations for small coning angles. The results and implications to electric sail control and

performance are summarized in Section 5. Limitations of the tether model used in this paper are

also discussed in terms of realistic �exible tethers and variable solar wind conditions.
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II. Electric sail tether motion

A. Thrust law

The magnitude of the force per tether length is given in [7] as

dFu
dz
≈ 0.18 max(0, V − Vw)

√
ε0Pdyn, (1)

where V is the tether voltage, Vw is the electric potential (mpu
2/2e) corresponding to the kinetic

energy of the solar wind ions, and Pdyn is the dynamic pressure of the solar wind, Pdyn = mpnwu
2.

In Equation (1), nw and u are the solar wind number density and �ow speed, respectively. As the

force exerted to the tether by the solar wind is perpendicular to the tether, the tether thrust vector

is written as

dFu
dz

= ξu⊥, (2)

where ξ = 0.18 max(0, V − Vw)√ε0mpnw. Concerning the results of this paper, the exact value of ξ

is not critical. The sail spin period is a free parameter that can be adapted so that the solar wind

force is a desirable fraction of the tether centrifugal force corresponding to the tangent of the tether

coning angle (Figure 1b) that de�nes the sail dynamics. The electric sail thrust integrated over the

sail tethers points approximately to the median direction (fu) of the solar wind (u) and sail normal

(n) directions as shown in Figure1a. This is a di�erence between the electric sail and the photon

sail for which the thrust is normal to the sail surface.

B. Coordinate systems

For further analysis, we de�ne two coordinate systems. Both systems are sail-centric with the

Y axis being perpendicular to the solar ecliptic plane. The one shown in Fig 1a, the Sail-centric

Solar Ecliptic (SSE) system has the Z axis pointing to the Sun, and the X axis completing the right

handed triad. The other, the Sail Ecliptic (SE) system (Fig 1b) is obtained by rotating the SSE

coordinates by the sail angle (α) with respect to the Y axis. As implied by the name, the SSE system

is analogous to the Geocentric Solar Ecliptic (GSE) system, except that XSSE = -YGSE, YSSE = -

ZGSE, and ZSSE = XGSE. Note that the de�nition of these coordinate systems in traditional terms

of the ecliptic plane is arbitrary, and the ecliptic plane can also be considered as the sailcraft orbital

plane.
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The analysis of the temporal evolution of the tether key variables, coning angle and rotation

rate, is simplest in the spherical SE coordinates as the desired sail orientation corresponds to the

solution of constant polar angle (θ̇SE = 0). Since the SE system is not inertial, �ctitious forces

arising from the Coriolis

FC = −2mΩ× v, (3)

centripetal (Fcp = −mΩ × (Ω× r)), and Euler (FE = −m Ω̇ × r) e�ects have to be taken into

account. In general, r and v are the particle position and velocity vectors in a reference frame

rotating with an angular velocity vector Ω. In this study, Ω is determined either by the turning

of the sail spin plane or by the orbital motion around the Sun. Since the angular frequency of the

sail rotation is much higher than that of the SE system, the centripetal and Euler e�ects can be

neglected as being of the second order in Ω.

C. Equation of motion

The equation of the tether motion can be obtained from

dL
dt

=
d

dt
(Iω) = τw + τC (4)

as expressed in terms of the tether angular momentum (L), angular velocity (ω), the moment of

inertia (I), and torques arising from the electric sail force (τw) and Coriolis e�ect (τC). For a thin

tether wire,

I =
1
3
ρVAl

3, (5)

where ρV is the mass density of the tether material, A is the cross-sectional area of the wire, and l

is the tether length. Using Equation (2), τw is integrated over the tether length as

τw =
∫ l

0

r× dFu

=
1
2
ξl2(−uϕeθ + uθeϕ), (6)

where

uθ = ux cos θ cosϕ+ uy cos θ sinϕ− uz sin θ

uϕ = −ux cosϕ+ uy cosϕ (7)
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are the spherical components of the solar wind, and l is the tether length. De�ning the tether

velocity in spherical coordinates, the torque caused by the Coriolis e�ect (3) can be integrated over

the tether length as in (6) as

τC =
∫ l

0

2ρl(r ·Ω)vdr

= 2IΩ sin θ sinϕ(θ̇eθ + sin θϕ̇eϕ), (8)

where any terms including possible tether length time variation have been neglected, and ρl is the

tether mass per unit length. Here, we assumed that the sail is orbiting on the ecliptic plane and

tilted as shown in Figure 1a, and Ω = Ωey. The angular velocity in Equation (4) can be solved

from v = ω × r to read as

ω = − sin θϕ̇eθ + θ̇eϕ. (9)

For further manipulation of the equation of motion (4), we express the solar wind velocity in terms

of the zenith angles of its nominal direction (θw and ϕw) as

uθ = u (sin θw cos θ cos(ϕ− ϕw)− cos θw sin θ)

uϕ = −u sin θw sin(ϕ− ϕw) (10)

de�ned by

ux = u sin θw cosϕw

uy = u sin θw sinϕw

uz = u cos θw. (11)

For completeness of the equation of motion, the solar wind zenith phase angle is explicitly left here

although ϕw = 0 for the case considered in this study. After these de�nitions, taking the time

derivative and rearranging the spherical vector components, we write the equation of motion as

l3 sin θ cos θ ϕ̇2 = −gλl2 (sin θw cos θ cos(ϕ− ϕw)− cos θw sin θ)

−2Ωl3 sin2 θ sinϕϕ̇

+
d

dt

(
l3θ̇
)

(12)
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d

dt

(
l3 sin2 θϕ̇

)
= −gλl2 sin θw sin θ sinϕ

+2Ωl3 sin2 θ sinϕθ̇, (13)

where

λ =
3ξu
2ρl

. (14)

In Equations (12) and (13) we have explicitly added the tether voltage modulation g. In addition

to the tether key variables, it is important to consider the tension at the root of the tether as

T = ρV

(
1
2
l2
(
θ̇2 + sin2 θϕ̇2

)
− d

dt

(
ll̇
))

(15)

for the diagnostics. While the equation of motion (12 and 13) is written for an arbitrary solar wind

direction including also possible non-radial components, the rest of the paper deals with a constant

solar wind and sail orbit on the ecliptic plane, and θw = α and ϕw = 0.

III. Solution for �xed tether spin plane (Ω = 0)

In general, the tether attitude control can be addressed by the tether voltage modulation g

introduced in the equation of motion (12) and (13). The tether spin plane can then be �xed to

correspond to any relevant sail pointing angle with a voltage modulation that attempts to maintain

θ̇ at zero in SE coordinates (Figure 1b). This can be done either numerically (g = gn) or analytically

(g = ga). In the former case, the modulation can be realized by a linear controller

gn = 1 + cnθ̇ (16)

that monitors the latitudinal speed θ̇ and corrects the tether voltage if θ̇ deviates from zero. For

constant solar wind, an analytic form for the modulation exists depending only on the tether rotation

phase: Inserting a modulation of

ga(ϕ) = ca (sinα cos θ cosϕ− cosα sin θ)−3
(17)

in the equation of motion (12) and(13), it can be seen that θ̇ = 0. The constant ca can be �xed by

normalizing the angular average of ga(ϕ) to unity,

< ga(ϕ) >ϕ=
1

2π

∫ 2π

0

g(ϕ)dϕ = 1. (18)
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The integral has a closed form and can be determined by partial integration. After this normaliza-

tion, the modulation can be written as

ga(ϕ) =
2
(
1− χ2

)5/2
(2 + χ2) (1 + χ cosϕ)3 (19)

≈ 1− 3χ cosϕ+O(tan2 Λ), (20)

where χ = tanα tan Λ, and the approximation (20) is for small coning angles. When considering the

voltage source design of the electric sail, (19) implies that the voltage has to include design margin

by a factor of

max(ga(ϕ)) =
2
(
1− χ2

)5/2
(2 + χ2) (1− |χ|)3 (21)

reserved for the modulator (Figure 2). It can be concluded that the larger the sail angle and the

coning angle (slower spin rate) are the larger amplitude modulation is needed for the tether control.

Applying the analytic modulation (19) in Equations (12) and (13), it can be shown that the

coning angle (Λ) depends on the average angular frequency (ω̃ =< ϕ̇ >ϕ) as

ω̃2 =
2λ cosα

(
1− χ2

)3/2
l sin Λ (2 + χ2)

(22)

≈ λ cosα
l sin Λ

(
1 +O(tan2 Λ)

)
. (23)

Taking angular average of (13), it can be seen that

d

dt

(
l3ω̃ cos2 Λ

)
= 0 (24)

d

dt

(
l3ω̃
)
≈ O(tan2 Λ) (25)

implying that l3ω̃ cos2 Λ is an adiabatic invariant of motion. Using Equations (22) and (24), ω̃ and

Λ can be solved as functions of time corresponding to a given temporal change of λ and l as shown

in examples below.

A. Example: Variations in electric sail force

Variations in the electric sail force are caused by the tether voltage or solar wind conditions.

Using Equations (22) and (24), the coning angle and angular frequency can be solved as functions of

the relative electric sail force (λ/λ0) as shown in Figures 3a and 3b, respectively. The curves shown

9



are for �ve initial coning angles ranging from 2◦ to 10◦ spaced by 2 degrees. Based on (24) for a

constant tether length, the force variations have relatively weak e�ect on the angular frequency.

B. Example: Tether length tuning

The tether length tuning can be used to vary the tether rotation rate as predicted by (22) and

(24). Figure 4 shows the coning angle and angular frequency as functions of the tether length (l)

relative to the initial length (l0). These are shown for �ve initial coning angles ranging from 2◦ to

10◦ spaced by 2 degrees. As implied by Figure (4b), the approximate (25) holds well and

ω̃ = ω̃0

(
l0
l

)3

. (26)

IV. Solution for rotating tether spin plane (Ω 6= 0)

Solving the equation of motion (12) and (13) for a non-zero Ω << ω̃, assumes an additional

variation (δg) in the voltage modulation, g → g + δg with δg << g. Inserting such a modulation in

(12) and using (22), δg as a function of the phase angle can be written as

δg = − 2Ωlω̃ sin θ sinϕ
λ cosα (1 + χ cosϕ)

. (27)

Inserting δg in (13) and considering only angular averaged quantities, the time variation of the

angular momentum is written as

d

dt

(
l3ω̃ cos2 Λ

)
= 2l3Ωω̃ tanα cos2 Λ

〈
sin2 ϕ

(1 + χ cosϕ)

〉
ϕ

≈ l3Ωω̃ tanα cos2 Λ +O(tan2 Λ) (28)

after expanding (1 + χ cosϕ)−1 in χ, noting that < sin2 ϕ >ϕ= 1/2, and < sin2 ϕ cosϕ >ϕ= 0.

A. Example: Turning of the sail spin plane

Figure 5 shows a controlled turn of the sail spin plane with the initial sail angle changing from

α = 0◦ to α = 45◦ as a function of time α(t) as shown in Figure 6a. This steering signal is then

used to alter the reference signal (19) of the voltage modulation. Finally, the tether variables are

transformed to the system rotated by α(t) and the control (16) applied in the rotated frame. Note

that the sail can be turned to any orientation (ϕw 6= 0) by using the tether phase as another steering
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signal to feed the reference modulation. The voltage modulation combining both the reference and

the control signals is shown in Figure 6b.

Analytically, based on Equation (28), the turning of the sail can be considered as follows. By

de�nition, Ω = α̇, and it can be seen that

d

dt

(
l3ω̃ cos2 Λ cosα

)
= 0 (29)

d

dt

(
l3ω̃ cosα

)
≈ O(tan2 Λ) (30)

as written in terms of the coning angle Λ. Hence, l3ω̃ cos2 Λ cosα is an adiabatic invariant, and any

changes of the sail primary variables ω̃ and Λ in the sail angle maneuvers can be determined by

using (22) and (29). The adiabatic invariant scaled to its initial value, µ is shown in Figure 6c as

determined by the tether variables. Using Equations (23) and (30), the time variation of the tether

coning angle and angular frequency can be solved following well the actual time evolution (black

solid line) as shown by gray dashed lines in Figures 6d and 6e, respectively. Finally, the tether root

tension scaled to the tensile strength of aluminum is shown in Figure 6f.

In general, using Equations (22) and (29), the coning angle (Figure 7a) and the angular frequency

(Figure 7b) can be solved as functions of the sail angle. As an estimate, the angular frequency

depends on the sail angle as

ω̃ = ω̃0

(cosα0

cosα

)
(31)

holding well for the relevant sail angles. The result implies that the amount of the initial angular

momentum can be reduced by starting the sail rotation with the sail pointing to the Sun and then

turning the sail as shown in Figure 5 to a desired inclination with respect to the Sun. In addition to

the tether reeling shown in Figure 4, the tether angular frequency can also be altered by changing

the tether angle.

B. Example: Maintaining the sail angle on orbit

The sail angle dependence of the sail spin rate has an important implication on the electric

sail dynamics when orbiting around the Sun. As the sail spin plane maintains it orientation with

respect to the distant stars (Figure 8a), the sail angle is slowly (∼1◦ per day) changing and the sail
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is rotating in the SSE coordinate system along the orbit around the Sun. Equivalently, the rotation

can be associated with a weak Coriolis force acting on the tether in SSE. However, to produce

constant thrust, the sail angle has to be �xed with respect to the Sun direction. This can be done

by the modulation of the electric sail force as depicted in Figures 8b and 8c.

In Figure 8b, the tether tip is on the spin plane (dashed line) at (XSSE =ZSSE = 0) pointing

downward (YSSE = l). Since the SSE system is rotating with Ω being anti-parallel to the YSSE

axis, the Coriolis force (FC ∝ v × Ω) is normal to the sail spin plane. However, as the electric

sail force is always aligned with the sun-sail line, only the corresponding component of FC can be

canceled by the sail force modulation (FES). While such a modulation maintains the sail attitude

with respect to the sun-sail line, the resultant force (F⊥ES) has a component in the direction of the

tether tip velocity (v). As this is the case also with the upward orientation of the tether (Figure

8b), the spin rate of the sail slowly increases for positive sail angles (orbiting away from the Sun).

For a negative sail angle (spiraling towards the Sun), the spin rate is expected to decrease.

Although this e�ect may well be negligible in the time scale of the sail rotation periods, the

accumulated change in the spin rate has to be taken into account for typical mission time scales.

Mathematically, the considerations above are included in Equation (28) for coning angles typical

for an electric sail. Now, Ω = 2π/year corresponding to the slow rotation of the SSE system along

the orbit around the sun. Since the sail angle is kept constant (α̇ = 0), Equation (28) leads to an

di�erential equation for ω̃ cos2 Λ that can easily be solved as

ω̃ cos2 Λ = ω̃0 cos2 Λ0e
Ω tanα(t−t0).

ω̃ ≈ ω̃0e
Ω tanα(t−t0) +O(tan2 Λ). (32)

If the sail angle is negative (positive) and the sail is orbiting towards (away from) the Sun, the spin

rate decreases (increases). Figure 9 shows the key sail parameters as a function of time for an time

interval of 50 days. These are shown for two sail angles of ±45◦. The voltage modulation (Figure

9a) shows vastly di�erent behavior depending on the sign of the sail angle as expected by Figure 2:

For the positive (negative) sail angle, the tether coning angle decreases (increases) while the spin

rate increases (decreases). It can be concluded that Equation (32) compares well with the numerical

results, and the accumulated changes in the spin rate are signi�cant in terms of mission time scales.

12



V. Conclusions

The results of this paper are based on a simple dynamical model for the electric sail tether,

a spherical pendulum rotating under constant solar wind forcing. This model assumes that the

tether is straight, i.e., well tightened by the centrifugal force. We derived rules for the electric sail

tether dynamics and control in terms of the key tether variables, coning angle and spin rate. The

analysis also provided us with an estimation of the voltage (and thus power) overhead to be reserved

for tether control. The amount of overhead depends on the coning angle, implying that a slowly

spinning sail requires more voltage reserve for its control than a fast spinning sail. The key variables

depend mainly on the exerted electric sail force (tether voltage and solar wind dynamic pressure),

tether length, and tether angle. Changes in the electric sail force lead to only minor changes in the

tether spin rate while changes in the sail con�guration (tether length) and orientation (for typical

sail angles) have a major e�ect on the tether spin rate. This is practical since for a given �ight

con�guration and orientation, the sail spin rate di�ers moderately from the spacecraft spin rate due

to the solar wind variations.

In addition, we described an non-trivial e�ect of the gradually evolving spin rate arising from

the sail orbital motion around the Sun and the related Coriolis e�ect. The tether voltage modulation

can be used to cancel the component of the Coriolis force normal to the sail spin plane and thus

maintain the electric sail orientation with respect to the sun-direction. However, the remaining

component lies in the spin plane, leading to a cumulative decrease or increase of the sail spin rate

for negative (inward) and positive (outward) sail angles, respectively. The reason for this e�ect is

that the electric sail force is not normal to the sail spin plane. Our analytical results showed that

the magnitude of the e�ect is such that it has to be taken into account in typical mission scenarios.

While it may somewhat complicate electric sail mission design, a possibility arises that the spin-up

angular momentum for the sail deployment could be partly obtained by this e�ect. Furthermore, a

clever control algorithm might be able to mitigate or nullify this e�ect by utilizing the natural small

directional variations of the solar wind.

In this paper we did not consider the e�ects of the natural solar wind variations. It is likely

that when these variations are taken into account, the bare electric sail model consisting only of
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tethers and their individual potential control is not able to keep the tethers apart from each other

and at the wanted tether angle at the same time. This is because each tether has two degrees of

freedom (e.g., the tether angle and the phase angle) while the potential adjustment provides only

one control parameter. Therefore it may well be that the electric sail design has to be augmented

by some mechanism which keeps the tethers apart, such as auxiliary tethers connecting together the

main tether tips [7] or small auxiliary propulsive devices (e.g. solar sails) at the tether tips. Even

in the presence of such devices, however, it is bene�cial if the applied potential control algorithm is

such that it keeps the tethers moving approximately in the right way already by itself. Therefore

we consider the bare electric sail model as a useful benchmarking arrangement when developing the

potential control algorithm.
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Fig. 3 (a) Coning angle and (b) relative angular frequency as functions of the electric sail

force relative to a reference force. Both the adiabatic solution (thick) and its approximate for

small coning angles (thin) are shown for �ve initial coning angles �xed at λ/λ0 = 1.

Fig. 4 (a) Coning angle and (b) relative angular frequency as functions of the tether length

relative to a reference length. Both the adiabatic solution (thick) and its approximate for

small coning angles (thin) are shown for �ve initial coning angles at l/l0 = 1.
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Fig. 5 Trace of the tether tip in SSE coordinates during a turning of the sail from an initial

orientation with the sail angle of α = 0◦ to α = 45◦.
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Fig. 6 Temporal evolution of the key sail variables during the sail spin plane turn shown in

Figure 5, (a) sail angle, (b) tether modulation signal, (c) relative angular momentum, (d)

coning angle, (e) relative angular frequency, and (f) tether root tension. The gray dashed

curves show the result of the adiabatic approximation.
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Fig. 7 (a) Coning angle and (b) relative angular frequency as a function of the sail angle. Both

the adiabatic solution (thick) and its approximate for small coning angles (thin) are shown

for �ve initial coning angles �xed at α = 0.

19



ZSSE

XSSE

ZSSE

X SSE

Z
SSE

X
SSE

ω
Z SSE

X SSEω

F ES∆

F ES∆

F ES∆

F C
F ES∆

F ES∆
F ES∆

F C

c)b)

a)

Ω

ω ω

Ω

v

v

Fig. 8 (a) Sail spin plane (dashed line) orientation with respect to the distant stars and to the

SSE system while orbiting around the Sun with no spin plane control applied. Orientations

of the Coriolis force (FC ∝ −Ω × v) acting on the tether pointing (b) anti-parallel and (c)

parallel to the YSSE axis. The sail spin plane can be �xed with respect to the sun direction

(positive sail angle shown) by modulation of the electric sail force (∆FES) that cancels the

Coriolis force (FC) aligned with the sail spin axis. However, the resultant force (∆F⊥ES) is in

the direction of the tether velocity (v) leading to a gradual increase in the tether spin rate

in the case of the positive sail angle (the sail is orbiting outward). For a negative sail angle

(orbiting inward), the spin rate is decreased (not shown).
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Fig. 9 Temporal evolution of the key sail variables during 50 days while orbiting around the

Sun as shown for both the positive and negative sail angles: (a) Tether voltage modulation for

positive (black) and negative (gray) sail angles, (b) relative angular momentum, (c) coning

angle, (d) relative angular frequency, and (e) tether root tension. The black lines show

the result of the numerical computations, and the dashed gray lines show the result of the

analytical calculations for the positive (p) and negative (n) sail angles.
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