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Abstract An electric sail is capable of guaranteeing the fulfilment of a class of trajectories
that would be otherwise unfeasible through conventional propulsion systems. In particular,
the aim of this paper is to analyze the electric sail capabilities of generating a class of displaced
non-Keplerian orbits, useful for the observation of the Sun’s polar regions. These orbits are
characterized through their physical parameters (orbital period and solar distance) and the
spacecraft propulsion capabilities. A comparison with a solar sail is made to highlight which
of the two systems is more convenient for a given mission scenario. The optimal (minimum
time) transfer trajectories towards the displaced orbits are found with an indirect approach.

Keywords Electric sail · Displaced non-Keplerian orbit · Trajectory optimization ·
Solar sail

1 Introduction

An electric sail is an innovative propulsion concept that, similar to a more conventional solar
sail, allows a spacecraft to deliver a payload to some high-energy orbit (McInnes 1999) with-
out the need for reaction mass (Janhunen and Sandroos 2007). The spacecraft is spun around
the symmetry axis (Mengali et al. 2008b) and the rotational motion is used to deploy approx-
imately one hundred long conducting tethers (Fig. 1) held at a high positive potential through
an electron gun, whose electron beam is shot roughly along the spin axis. The electric field
generated by the tethers shields the spacecraft from the solar wind ions that, impacting on it,
generate a continuous thrust that decays as (1/r)7/6, where r is the Sun-sailcraft distance.
To control the spacecraft thrust angle (defined as the angle between the thrust direction and
the Sun-spacecraft line), the sail-plane attitude may be varied with the aid of potentiometers
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Fig. 1 Electric sail schematic
view

placed between the spacecraft and each tether. For an in depth analysis of the electric sail
performance, the reader is referred to Mengali et al. (2008b).

The theoretical availability of a propelling thrust for an unlimited time makes accessible
a class of orbits (Mengali et al. 2008a; Racca 2004; Mengali and Quarta 2007) that would
be otherwise very difficult or even infeasible through conventional propulsion systems (i.e.,
chemical or electrical). An important application is constituted by missions whose aim is to
observe the Sun’s polar regions, such as the Ulysses solar polar mission (Wenzel et al. 1992).
These mission typologies, when achieved with chemical propulsion, require the use of highly
elliptic trajectories of considerable inclination, whose fulfilment is typically obtained with
the aid of complex multiple flyby maneuvers. An alternative consists of inserting a spacecraft
in a nearly circular, non-Keplerian orbit (NKO), whose plane does not pass through the Sun’s
center of mass. Such a displaced NKO can be maintained by suitably orienting the thrust
direction in such a way to balance the centrifugal and gravitational components of spacecraft
acceleration. This class of orbits was studied by McInnes and Simmons (1992), Hughes and
McInnes (2002), and McInnes (1997) as a possible application for solar sails but, currently
no study involving the implementation of displaced orbits through electric sail is available.

The aim of this paper is to systematically analyze the potential of an electric sail to enable
a class of NKO aimed at the observation of Sun’s polar regions. In particular, the main NKO
characteristics (in terms of orbital period and space direction) are related to the propulsion
system capabilities (in terms of both acceleration and maximum thrust angle). Besides the
study of optimal transfer trajectories towards the NKO, a performance comparison with an
ideal solar sail is discussed.

2 Mathematical model

The equations of motion for an electric sailcraft in a heliocentric inertial frame T�(x, y, z),
with unit vectors î, ĵ , k̂, are:

ṙ = v (1)

v̇ = −µ�
r3 r + a⊕

( r⊕
r

)η
â (2)

where r , and v are the spacecraft position and velocity relative to T� (with r � ‖r‖),
µ� = 132712439935.5km3/s2 is the Sun’s gravitational parameter, η � 7/6 (Janhunen and
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Fig. 2 Reference frame and cone
angle

Sandroos 2007), a⊕ is the maximum sailcraft propulsive acceleration at r = r⊕ � 1 AU and
â is the thrust unit vector. In analogy with the solar sail literature, a⊕ is called the electric
sail characteristic acceleration.

Although an accurate analysis of the electric sail subsystems is not yet available, prelim-
inary studies suggest that the maximum propelling acceleration, achievable in a near future
at r⊕ = 1 AU, is on the order of 2 mm/s2. A reasonable estimate of a⊕, compatible with
the current technology, is about 0.3–0.5 mm/s2 (Janhunen and Sandroos 2007). Unlike elec-
tric thrusters, the propelling acceleration cannot be freely oriented, but it is constrained to
lie within a cone whose axis coincides with the direction of the spacecraft position vector
r̂ � r/r . In other terms (Fig. 2) the thrust direction forms an angle α ∈ [0, αmax] with respect
to the position vector, where αmax < π/2 is the half-opening angle of the thruster operating
cone (for an ideal solar sail, instead, αmax = π/2). The cone angle is given by:

cosα � r̂ · â (3)

Although the maximum value of α is not known with confidence, the authors conjecture
that it lies between 20◦ and 35◦, based on numerical simulations. The electric sail thrust
level depends on the solar wind properties, which are variable and cannot be estimated with
confidence. To a large extent, however, these fluctuations can be compensated for by the
electric thrust control, that is, by adjusting the electron gun current and voltage. Therefore,
for the sake of simplicity, the solar wind variations are not taken into account in the present
analysis.

The electric sail capability of generating a propelling thrust without any propellant con-
sumption is useful for planning complex and interesting trajectories. A class of these trajec-
tories is especially advisable for the study of the Sun’s polar regions. To this end, consider
an electric sail moving on a circular orbit of radius R, whose orbital plane is parallel to the
ecliptic plane (x, y) (Fig. 3). Let ω � ‖ω‖ be the electric sail constant angular velocity,
T = 2π/ω the corresponding orbital period, and h the out-of-plane displacement. Angle
γ � arctan(h/R) defines the sail orientation with respect to the ecliptic plane and, therefore,
the spacecraft horizon (Brown 1992).
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Fig. 3 Layout of displaced non-Keplerian orbit

Without loss of generality, in the following the spacecraft orbit will be assumed to belong
to the half-space z > 0. Such a displaced orbit may be maintained by suitably orienting
the propelling acceleration in such a way to balance the gravitational and the centrifugal
acceleration (Fig. 3), viz.

a⊕ (r⊕/r)η sin α = ω2 R sin γ (4)

a⊕ (r⊕/r)η cosα + ω2 R cos γ = µ�/r2 (5)

Let ω̃ �
√
µ�/r3 be the angular velocity of the Keplerian orbit of radius r . Assuming γ �= 0,

from Eqs. 4 to 5 the cone angle α and the characteristic acceleration a⊕ necessary to maintain
a NKO are:

tan α = (ω/ω̃)2 tan γ

1 + tan2 γ − (ω/ω̃)2
(6)

a⊕
µ�/r2⊕

=
(

1 − (ω/ω̃)2

1 + tan2 γ

) √√√√1 + tan2 γ
[(

1 + tan2 γ
)
/(ω/ω̃)2 − 1

]2

(r⊕
r

)2−η
(7)

where µ�/r2
⊕ ∼= 5.93 mm/s2 is the solar gravitational acceleration at 1 AU. In particular,

Eq. 6 coincides with that found by McInnes and Simmons (1992) for solar sails.
Some remarks about the admissible combinations of γ and (ω̃/ω) are in order.

Consider the family of orbits, referred to as Type II by McInnes (1999), characterized by a non-
Keplerian orbital period equal to the Keplerian period (i.e., these orbits are synchronous with
the Keplerian circular orbits having radius r ). The mathematical condition for Type II orbits
is, therefore, ω = ω̃. Assuming an electric sail cone angle constraint αmax = 35◦, from Fig. 4
(equivalently from Eq. 6), one concludes that a Type II orbit may be obtained only provided
that the sail orientation angle γ is greater than 55◦. Figure 5 shows the corresponding values
of characteristic acceleration. A displaced NKO at Earth’s distance needs a characteristic
acceleration greater than 4.8 mm/s2.

The particular case γ = 0 deserves a separate discussion. First observe that the condition
γ = 0 corresponds to orbits belonging to the ecliptic plane (h = 0). Equation (4) shows that
γ = 0 implies α = 0, while from Fig. 3 it is clear that h = 0 implies r ≡ R. Therefore, the
equilibrium condition in Eq. 5 becomes
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Fig. 4 Sailcraft cone angle α
along the displaced orbit as a
function of γ , and (ω/ω̃), see
Eq. 6
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Fig. 5 Characteristic
acceleration necessary to
maintain a Type II NKO as a
function of γ , and r/r⊕
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a⊕
µ�/r2⊕

=
[

1 −
(ω
ω̃

)2
] (r⊕

r

)2−η
(8)

For a given angular velocity ω (or orbital period T = 2π/ω), Eq. 8 provides the
relationship between the distance r and the corresponding characteristic acceleration a⊕
necessary to maintain an equatorial NKO. In particular, note that ω = √

µ�/r3 implies
a⊕ = 0 because, in that case, one obtains a circular Keplerian orbit. Figure 6 shows that it is
possible to generate an in-plane, artificial Earth-synchronous NKO, that is, an orbit having
orbital period T = 1 year, even for r < 1 AU, provided that the characteristic acceleration
is sufficiently high.

Another particular situation is obtained for γ = π/2, that is, when the electric sail is
placed on the z-axis of the reference frame T�(x, y, z). In this case the orbit degenerates
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Fig. 6 NKO radius of ecliptic
orbits (γ = 0) as a function of the
sailcraft characteristic
acceleration a⊕, and orbital
period T

0.25

0.5
0.75

1

1.5 2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6

0.5

1

1.5

2

2.5

3

Fig. 7 Sailcraft performance
(a⊕) for heliostationary orbit
(radius rl ), see Eq. 9
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in a point and the sail levitates over the Sun’s pole at a distance rl from the Sun’s center
of mass. This condition, although optimal for observing the solar polar region, can be sat-
isfied for distances <1 AU only with very high performance electric sails. In fact, from the
balance equation between the propelling acceleration a⊕ (r⊕/rl)

η and the solar gravitational
attraction µ�/r2

l (Eq. 8), the equilibrium distance rl is found to be

rl = r⊕

(
a⊕

µ�/r2⊕

)1/(η−2)

(9)

Note that Eq. 9 can also be obtained from Eq. 7 in the limit as γ → π/2. Assuming a⊕ ≤
1 mm/s2, Fig. 7 shows that the heliostationary condition may be obtained above 8.5 AU, a
sizeable distance from the Sun. With the current technology, assuming a⊕ ≤ 0.5 mm/s2,
condition (9) implies a very large distance from the Sun, on the order of 20 AU, that is,
approximately the same distance as Uranus’ orbit radius.

Return now to Eqs. 6–7. These two equations allow one to obtain the thrust direction and
estimate the sail performance (in terms of a⊕) as a function of the triplet (γ, r, ω). For a given
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Fig. 8 Sailcraft performance for
NKO with T = 1 year, and
αmax = 35◦(µ⊕/r2⊕ =
5.93 mm/s2). a r > 1 AU.
b r < 1 AU

(a)

(b)

value of orbital period or angular velocity of the NKO, the information contained in Eqs. 6–7
may be consolidated and collected in graphical form. For example, assuming αmax = 35◦,
and T = 1 year (that is,ω = 2π rad/year) the result is shown in Fig. 8. For the sake of clarity,
the information concerning inner (Fig. 8a) and outer (Fig. 8b) orbits have been separated.

Figure 8b shows that an Earth-synchronous NKO with a sufficient view angle (on the
order of γ = 65◦) and having a solar distance of 0.9 AU, requires a very high characteristic
acceleration, that is a⊕ ∼= 6 mm/s2. Using an electric sail of medium–high performance, with
a⊕ ∈ [1, 2] mm/s2, it is possible to generate a displaced NKO with a rather small view angle
(γ < 12◦) at a solar distance close to 1 AU.

3 Optimal orbit transfer

Having analyzed different NKO as a function of both sail characteristics (in terms of a⊕,
and αmax) and orbit type (r, T , and γ ), we are now in a position to discuss the problem of
transfer trajectory. In particular, the transfer problem is addressed in an optimal framework,
that is, by minimizing the flight time necessary to transfer the spacecraft from a given parking
orbit to the desired final NKO. To simplify our discussion, an initial circular parking orbit
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Fig. 9 Heliocentric spherical
coordinate system

is considered. The orbit has radius r⊕, and is assumed to belong to the ecliptic plane. This
situation is representative of a sailcraft deployment on a parabolic Earth escape trajectory,
that is, with zero hyperbolic excess energy.

Due to the problem symmetry, the equations of motions (1)–(2) can be suitably expressed
through a spherical coordinate system T�(r, ψ, γ ), where ψ is the ecliptic longitude, mea-
sured anticlockwise from x axis.

With reference to Fig. 9 and with the aid of Wie (2007), the following equations of motion
are obtained:

ṙ = vr (10)

ψ̇ = vψ

r cos γ
(11)

γ̇ = vγ

r
(12)

v̇r = v2
ψ + v2

γ

r
− µ�

r2 + τ ar (13)

v̇ψ = vψ vγ tan γ − vr vψ

r
+ τ aψ (14)

v̇γ = −v
2
ψ tan γ + vr vγ

r
+ τ aγ (15)

In Eqs. 13–15, τ = (0, 1) is the thruster switching function, which allows one to model the
presence of coasting arcs in the spacecraft trajectory. To define the sail acceleration orien-
tation, it is convenient to introduce a local orbital frame TL (xL , yL , zL), with unit vectors
defined as (Fig. 9)

îL = r̂, ĵ L = k̂ × r̂, k̂L = îL × ĵ L (16)

The projection of â in the plane (yL , zL ) defines the sail clock angle δ ∈ [0, 2π], measured
anticlockwise from the yL axis. The components of the thrust acceleration with respect to
TL are given by
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[a]TL =
⎡

⎣
ar

aψ
aγ

⎤

⎦ � a⊕
(r⊕

r

)η
⎡

⎣
cosα

sin α cos δ
sin α sin δ

⎤

⎦ (17)

The minimum transfer time 	t = t f − t0 ≡ t f is calculated using an indirect technique,
by maximizing the scalar functional J defined as

J � −t f (18)

Recalling the equations of motion (10)–(15), the Hamiltonian H is given by:

H �λr vr + λψ
vψ

r cos γ
+ λγ

vγ

r
+ λvr

(
v2
ψ + v2

γ

r
− µ�

r2

)

+ λvψ
vψ vγ tan γ − vr vψ

r
− λvγ

v2
ψ tan γ + vr vγ

r
+ H ′

(19)

where λr , λψ, λγ , λvr , λvψ , and λvγ are the adjoint variables and H ′ coincides with that
portion of the Hamiltonian H that explicitly depends on the control vector u � [τ, α, δ]T,
that is

H ′ � a⊕ τ
[
λvr cosα + λvψ sin α cos δ + λvγ sin α sin δ

] (r⊕
r

)η
(20)

The time derivative of j-th adjoint variable is obtained from the Euler–Lagrange equations:

λ̇ j = −∂H

∂ j
with j � (r, ψ, γ, vr , vψ , vγ ) (21)

Evaluating Eq. 21 using Eqs. 19 and 20 yields:

λ̇r = H − H ′ − λr vr − λvr µ�/r2

r
+ η H ′

r
(22)

λ̇ψ = 0 (23)

λ̇γ = vψ
(
λvγ vψ − λvψ vγ − λψ sin γ

)

r cos2 γ
(24)

λ̇vr = −λr + λvψ vψ + λvγ vγ

r
(25)

λ̇vψ = 2
(
λvγ vψ tan γ − λvr vψ

) − λvψ
(
vγ tan γ − vr

)

r
− λψ

r cos γ
(26)

λ̇vγ = −λγ + 2 λvr vγ + λvψ vψ tan γ − λvγ vr

r
(27)

From the Pontryagin’s maximum principle, the optimal control law u(t), to be selected in
the domain of feasible controls U , is such that, at any time, the function H ′ is an absolute
maximum:

u = max
u∈U

H ′ (28)
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Invoking the necessary conditions ∂H ′/∂α = 0, and ∂H ′/∂δ = 0, the following relationships
for the thrust angles are obtained:

α =
{
α� if α� ≤ αmax

αmax if α� > αmax
with cosα� � λvr√

λ2
vr +λ2

vψ
+λ2

vγ

(29)

cos δ = λvψ√
λ2
vψ

+λ2
vγ

, sin δ = λvγ√
λ2
vψ

+λ2
vγ

(30)

Note that the optimal control law (29) and (30) is the three-dimensional extension of the
analogous (bi-dimensional) result discussed by Mengali et al. (2008b). The optimal control
law for the switching function is found observing that H ′ depends linearly on τ . As a result,
a bang-bang control is optimal (Stengel 1986):

τ = 1 + sign (sw)

2
with sw � λvr cosα + sin α

√
λ2
vψ

+ λ2
vγ

(31)

where sign (·) is the signum function and α is given by Eq. 29.
The boundary-value problem associated to the variational problem is constituted by the

equations of motion (10)–(15) and by the Euler–Lagrange equations 22–27. The correspond-
ing 12 boundary conditions are connected to the desired spacecraft position and velocity at
both the initial (t0 = 0) and final (t f ) time.

Let r f , γ f , and ω be the given characteristic parameters of the final displaced NKO.
Recalling that the initial parking orbit is circular with radius r⊕ = 1 AU, one has:

t = t0 : r = r⊕, ψ ≡ γ ≡ vr ≡ vγ = 0, vψ = √
µ�/r⊕ (32)

t = t f : r = r f , vr ≡ vγ ≡ λψ = 0, γ = γ f , vψ = ω r f cos γ f (33)

In Eq. 32, the conditionψ(t0) = 0 is enforced in view of the problem symmetry and all λ j (t0)
are free, while the condition λψ(t f ) = 0 in (33) is due to the fact that the angular position
ψ on the displaced NKO is an output of the optimization process. Also note, from Eq. 23,
that the adjoint variable λψ is constant along the optimal trajectory and, therefore, λψ = 0
during the whole transfer. The transversality condition H(t f ) = 1, necessary to determine
the optimal value of t f , completes the differential problem (Bryson and Ho 1975).

The optimal control law, given by Eqs. 29–30, has been used to calculate the minimum
time transfer trajectories towards a displaced NKO of given characteristics in terms of r f , γ f ,
and T . Assuming an Earth-synchronous orbit (T = 1 year), and a solar distance r f = 0.9 AU,
the minimum transfer times t f have been calculated as a function of the view angle in the
range γ f ∈ [1◦, 28◦]. In all of the simulations, the differential equations have been integrated
in double precision using a variable order Adams–Bashforth–Moulton solver (i.e., Matlab’s
ODE113) with absolute and relative errors of 10−12. The simulation results of the optimal
transfers have been summarized in Fig. 10. The choice about the value of γ f is essentially
related to the value of characteristic acceleration required to maintain the given displaced
orbit. In fact, Figs. 8b and 10c show that γ f > 28◦ corresponds to an extremely high value
of characteristic acceleration, that is, a⊕ > 3.5 mm/s2 (see also Eq. 7).

For example, assuming γ f = 25◦, T = 1 year, and r f = 0.9 AU (which corresponds to
a displaced orbit with a height h = r f sin γ f ∼= 0.38 AU with respect to the ecliptic plane),
the optimal transfer time is t f ∼= 201 days and the required characteristic acceleration is
a⊕ ∼= 3.16 mm/s2. The time history for the control angles α = α(t) and δ = δ(t) is illus-
trated in Fig. 11. The presence of a coasting phase of about 50 days, starting 40 days after the
departure, is due to the constraint on the maximum value of the cone angle. This coasting
phase is also visible in Fig. 12, which shows the sailcraft transfer trajectory.
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Fig. 10 Minimum time NKO
transfer as a function of
γ f (T = 1 year and
r f = 0.9 AU). a Flight time.
b Sail cone angle, see Eq. 6.
c Characteristic acceleration,
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Fig. 11 Time histories of control
angles α and δ for a minimum
time transfer trajectory
(γ f = 25◦, T = 1 year, and
r f = 0.9 AU)
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4 Numerical response to perturbations

For the sake of completeness, and in analogy with solar sail literature, it is interesting to
introduce the problem of displaced orbit sensitivity to perturbations. In fact, the previous
analysis does not take into account any disturbance and is based on the exact fulfilment
of the equilibrium relationships given by Eqs. 6–7. Unlike the stability study proposed in
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Fig. 12 Sailcraft optimal trajectory (γ f = 25◦, T = 1 year, and r f = 0.9 AU). The whole trajectory takes
place in the half-space z > 0

McInnes (1998), where the equations of motion are linearized with respect to the nomi-
nal orbit, here the behavior of NKO with respect to perturbations is tackled by simulation,
using the full nonlinear equations of motion. The aim is to investigate the capability for a
spacecraft of maintaining a displaced orbit within acceptable tolerances during the whole
operational life.

Although the following analysis is confined to study the effect of a position error alone on
the motion characteristics, it may be easily extended to the other parameters of concern with
minor adjustments. The approach consists in slightly modifying the nominal equilibrium
distance rnom (which, by definition, satisfies Eqs. 6–7), replacing it with a perturbing value
in the form r(t0) = rnom × 1.001. The nonlinear differential equations of motion are then
propagated for a given time interval (in our simulations t f = 3 years) and the spacecraft
position at the end of simulation is calculated.

A viable trajectory is associated to the fulfilment of the condition r(t f )/r(t0) < 1.01, or
when the difference between final and initial distance does not exceed 1/100 of the initial
nominal value. The results of this analysis are summarized in Fig. 13 (which is in accor-
dance with Fig. 8b). Note that the nominal trajectory shown in the previous example (γ f =
25◦, T = 1 year, and r f = 0.9 AU) is in the region in which r(t f )/r(t0) > 1.01. This result
is confirmed by the simulations shown in Fig. 14. Such a displaced orbit would require the
employment of an active control system. This study, however, is beyond the scope of this
paper and is left to future research.

5 Electric sail versus solar sail

Similar to electric sails, solar sails are capable of generating propelling thrust by suitably
converting the energy coming from the Sun without the need of any propellant. A solar sail
is a large, lightweight and reflective surface, essentially a large space mirror (McInnes and
Brown 1990), which is able to propel a spacecraft through the momentum transfer from pho-
tons that, emitted by the Sun, strike the sail. A solar sail may display a rather complex and,
in general, not plane shape (Kirpichnikov et al. 2004; Mengali and Quarta 2005a,b, 2006).
Under the simplified assumption that the sail surface is plain, it may be shown (McInnes
1999; Wright 1992) that the propelling thrust varies as the inverse square distance from the
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Fig. 13 Numerical analysis to
position perturbations of electric
sail displaced orbits with period
T = 1 year(t0 = 0, t f = 3 years)
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Fig. 14 Comparison of nominal and perturbed displaced orbits for a time span of 3 years(o ≡ t0 = 0,� ≡
t f = 3 years). The nominal orbital parameters are γ f = 25◦, T = 1 year, and r f = 0.9 AU
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Sun and its value is a function of the cone angle α, that is, the angle between the Sun-sailcraft
direction r̂ and the normal to the sail plane n̂ in the direction of thrust.

Unlike electric sails, the maximum value of the cone angle is not constrained by instability
reasons, but from the fact that the thrust is always directed away from the Sun. As a result,
αmax = 90◦. The solar sail performance is characterized by the value of the characteristic
acceleration a⊕, defined as the maximum developable acceleration at r = r⊕ � 1 AU, and
α = 0.

Assuming a perfectly reflecting sail film, it may be shown (Wright 1992; Mengali et al.
2007) that the propelling acceleration is given by:

aSS = a⊕
(r⊕

r

)2
cos2 α n̂ (34)

In particular, note that the net thrust vanishes when α = αmax � 90◦, because in that case
the sail plane is parallel to the incident rays. Decomposing the dimensionless acceleration
aSS/a⊕ along the radial and transversal directions, the results can be collected in graphi-
cal form. This is done in Fig. 15, in which the electric sail and solar sail performance are
compared under the assumption of same solar distance r = r⊕. From Eq. 34, the differ-
ential equation of motion for a solar sail is given by (Kim and Hall 2005; Koblik et al. 2003;
Van Der Ha and Modi 1979):

Fig. 15 Solar sail versus electric
sail performance in terms of
dimensionless propulsive
acceleration components a/a⊕
when r = r⊕
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Fig. 16 Solar sail performance in terms of dimensionless propulsive acceleration components aSS/a⊕ when
r = r⊕

r̈ = −µ�
r3 r + a⊕

(r⊕
r

)2
cos2 α n̂ (35)

Using the same technique used for electric sails, it is possible to obtain the relationships,
for both the cone angle and the characteristic acceleration, necessary to maintain a displaced
NKO of given characteristics (Baoyin and Mcinnes 2006). It may be shown (McInnes and
Simmons 1992), that α satisfies a relationship identical to Eq. 6, while as long as a⊕ is
concerned, the result is:

a⊕
µ�/r2⊕

=
{

tan2 γ + [
1 − (ω/ω̃)2

]2
}3/2

[
tan2 γ + 1 − (ω/ω̃)2

]2

√
1 + tan2 γ (36)

Note that the required characteristic acceleration of a solar sail NKO is a function of two
parameters only, γ and ω/ω̃, and, in particular, unlike electric sails, does not depend on r .
The reason for this difference is that the solar sail propelling acceleration varies with the
distance in the same way as the solar gravitational attraction.

For a given value of the NKO period, Eqs. 6 and 36 can be collected in a single graph. The
results obtained for an Earth-synchronous orbit (T = 1 year) are shown in Fig. 16.

Unlike electric sails (Fig. 8), as long as a⊕/(µ�/r2
⊕) < 1, the solar sail NKO are character-

ized by r < 1 AU. Nevertheless, thanks to the inverse quadratic relationship between thrust
and distance, solar sails are capable of maintaining NKO using characteristic accelerations
smaller than those corresponding to electric sails when small values of γ and r are sought.
On the other hand, for distances close to r⊕ and wide view angles an electric sail is superior
because the required characteristic acceleration is smaller.
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Assuming T = 1 year, Eqs. 7 and 36 allow one to locate the space regions, in the plane
(r, γ ), in which the electric sail performance is superior to a solar sail in the sense that
a⊕ES < a⊕SS . This situation is summarized in Fig. 17. For example, an Earth-synchronous
displaced NKO with radius r = 0.9 AU and view angle γ = 50◦ requires a solar sail char-
acteristic acceleration a⊕SS/(µ�/r2

⊕) ∼= 0.993 and a cone angle α ∼= 27.2◦, while, for an
electric sail, a⊕ES/(µ�/r2

⊕) ∼= 0.857 (which is 14% less than that of the solar sail).

6 Conclusions

Electric sails may be used effectively to generate families of displaced non-Keplerian orbits.
These orbits are maintained for long time periods by suitably orienting the sail plane in such a
way that centrifugal and gravitational forces are balanced by the propelling thrust. For a given
orbital period and a given sail performance (measured through its characteristic acceleration)
it is possible to find the required values of orbital plane position, view angle and thrust angle.
These results have been collected in graphical form to obtain a quick view of the electric sail
capabilities. The problem of minimum time transfers towards a given non-Keplerian orbit
has also been solved through an indirect approach. Finally, the problem of displaced orbit
sensitivity to perturbations has been addressed by simulation.

For better emphasizing the electric sail performance, a comparison has been made with an
ideal solar sail. From the obtained results, the electric sail appears as an intriguing alternative
to a solar sail. Nevertheless, due to the substantial differences between the two propulsion
systems, it is not possible to conclude whether an electric sail is superior or not to a solar sail,
as long as missions involving displaced non-Keplerian orbits are concerned. In fact, a fair
comparison requires a more accurate analysis of the electric sail subsystems. In particular, the
availability of a parametric mass breakdown model is necessary to define a quantitative rela-
tionship between the electric sail characteristic acceleration and the deliverable payload mass.
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