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This paper describes a semi-analytical approach to electric sail mission analysis under

the assumption that the spacecraft experiences a purely radial, outward, propulsive

acceleration. The problem is tackled by means of the potential well concept, a very

effective idea that was originally introduced by Prussing and Coverstone in 1998. Unlike

a classical procedure that requires the numerical integration of the equations of motion,

the proposed method provides an estimate of the main spacecraft trajectory para-

meters, as its maximum and minimum attainable distance from the Sun, with the

simple use of analytical relationships and elementary graphs. A number of mission

scenarios clearly show the effectiveness of the proposed approach. In particular, when

the spacecraft parking orbit is either circular or elliptic it is possible to find the optimal

performances required to reach an escape condition or a given distance from the Sun.

Another example is given by the optimal strategy required to reach a heliocentric

Keplerian orbit of prescribed orbital period. Finally the graphical approach is applied to

the preliminary design of a nodal mission towards a Near Earth Asteroid.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Due to their long flight times, space missions with low-
thrust propulsion systems are usually studied in an
optimal framework, by maximizing (or minimizing) a
suitable scalar performance index. The latter coincides,
for example, with the propellant mass for electrical
propulsion systems [1,2] or with the total flight time for
a propellantless thruster as a solar sail [3,4] or an electric
sail [5–10]. The solution of the optimal control problem
associated to the design of the space trajectory is the
output of a complex numerical optimization process, and
the solution is typically found using a dedicated software.
Only in a few cases the optimal control problem can be
fully solved in an analytical or graphical form. One of such
special cases is represented by the problem of calculating
the optimal escape conditions for a space vehicle with
ll rights reserved.
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constant, outward, propulsive acceleration. The first solu-
tion to this problem was analytically found by Tsien [11]
assuming that the spacecraft is placed on a parking
circular orbit and, recently, was extended by Mengali
and Quarta [12] to elliptical orbits using the potential
well, a concept originally introduced by Prussing and
Coverstone [13].

The aim of this paper is to introduce a graphical
approach for the preliminary deep space mission analysis
of an electric sail (E-sail) [7,14,15], whose attitude is
oriented in such a way to provide a purely radial thrust
along the whole heliocentric trajectory. The space vehicle
is therefore subjected to a propulsive outward accelera-
tion that, according to the most recent studies [16], varies
inversely proportional to the Sun–spacecraft distance r.
Following Prussing and Coverstone [13], when the pro-
pulsion system is switched on, the spacecraft trajectory
can be mapped into an ‘‘energy plane’’, that is, the plane
in which the specific mechanical energy of the osculating
orbit is expressed as a function of the spacecraft radial
distance from the primary. In particular, Prussing and
Coverstone [13] suggest to partition the energy plane into
ch to electric sail mission design with radial thrust, Acta
2.03.022
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Nomenclature

a semimajor axis
a� E-sail characteristic acceleration
E specific mechanical energy of the osculating

orbit
Ew potential well boundary
e eccentricity
P point in the energy plane
p semilatus rectum
q resonance ratio
R prescribed distance
r Sun–spacecraft distance (r�91 AU)
T orbital period
t time
u radial component of velocity
V1 hyperbolic excess velocity
v circumferential component of velocity
b dimensionless characteristic acceleration
y polar angle
m� Sun’s gravitational parameter
o argument of periapsis

Subscripts

0 initial, parking orbit
a aphelion
b point on the potential well boundary
e escape
j jettison
k Keplerian
min minimum
n Near Earth Asteroid
p perihelion
t tangent

ascending node
descending node

Superscripts

� time derivative
~ dimensionless value
% critical value
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allowed and forbidden regions using the so-called poten-
tial well, which bounds the radial distance interval within
which the spacecraft motion is feasible.

With the aid of a suitable choice of the independent
variables, another definition of the energy plane, slightly
different than that of Ref. [13], is now introduced. In this
new energy plane, the specific mechanical energy of an
E-sail depends linearly on the distance from the Sun, and
its slope is proportional to the E-sail characteristic accel-
eration, that is, the maximum propulsive acceleration at a
Sun–spacecraft distance equal to 1 Astronomical Unit
(AU). The main results of a preliminary mission analysis
are thus obtained by simply intersecting the potential
well boundary with the line corresponding to the specific
mechanical energy level.
2. E-sail motion with radial thrust

Consider a spacecraft, of constant mass, that initially
tracks a heliocentric closed parking orbit of semilatus
rectum p0 and eccentricity e0. The spacecraft primary
propulsion system is constituted by an E-sail with char-
acteristic acceleration a�, which, by assumption, provides
a radial outward thrust whose modulus is inversely
proportional [16] to the Sun–spacecraft distance r.

The E-sail thrust is switched-on at t¼ t090, and the
succeeding spacecraft motion takes place in the plane of
the parking orbit. The corresponding spacecraft equations
of motion in a polar, heliocentric reference frame are
[11,16]

_r ¼ u ð1Þ

_y ¼
ffiffiffiffiffiffiffiffiffiffiffim�p0
p

r2
ð2Þ
Please cite this article as: G. Mengali, et al., A graphical approa
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_u ¼
m�
r2

p0

r
�1

� �
þa�

r�
r

ð3Þ

where y is the polar angle measured counterclockwise
from the direction of the parking orbit’s eccentricity
vector, u is the radial component of the spacecraft
velocity, m� is the Sun’s gravitational parameter, and
r�91 AU is a reference distance. In the special case of
circular parking orbit (e0 ¼ 0), the polar angle y is mea-
sured counterclockwise from the Sun–spacecraft direction
at time t0.

When Eq. (1) is substituted into (3), the following
second order, nonlinear differential equation in the vari-
able r is obtained:

€r ¼
m�
r2

p0

r
þb

r

r�
�1

� �
ð4Þ

where the dimensionless characteristic acceleration b is
defined as

b¼
a�

m�=r2
�

ð5Þ

Note that b plays the same role in the E-sail performance
characterization as the lightness number [17] does for
solar (or photonic) sails, when an ideal force model [18] is
assumed.

The boundary conditions of Eq. (4) are given by the
Sun–spacecraft distance and the spacecraft radial compo-
nent of velocity at the initial time t0, that is

r0 ¼
p0

1þe0 cos y0
, u0 ¼

ffiffiffiffiffiffiffim�
p0

r
e0 sin y0 ð6Þ

where y09yðt0Þ is the starting polar angle.
ch to electric sail mission design with radial thrust, Acta
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Fig. 1. Potential well boundary for a circular parking orbit.
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Taking into account the initial conditions (6), the first
integral of the autonomous differential Eq. (4) is

u2�u2
0

2
þ
m�p0

2

1

r2
�

1

r2
0

 !
�m�

1

r
�

1

r0

� �
�b

m�
r�

log
r

r0

� �
¼ 0

ð7Þ

Introduce now the specific mechanical energy E of the
spacecraft heliocentric osculating orbit

E ¼ u2

2
þ
m�p0

2r2
�
m�
r

ð8Þ

and observe that Eq. (7) can be written in a compact form
as

E ¼ E0þb
m�
r�

log
r

r0

� �
ð9Þ

where

E09Eðt0Þ ¼
u2

0

2
þ
m�p0

2r2
0

�
m�
r0

ð10Þ

is the specific mechanical energy of the spacecraft parking
orbit. Note that the last term in Eq. (9) coincides with the
work, per unit of mass, of the E-sail propulsive thrust
corresponding to the radial displacement Dr¼ r�r0.

According to Prussing and Coverstone [13], Eq. (9)
maps the spacecraft motion into the ‘‘energy plane’’, that
is, the plane where the osculating orbit’s specific mechan-
ical energy E is expressed as a function of the radial
distance r. In this plane the spacecraft motion is from
below constrained by the so-called potential well [13],
that is

EZEw ð11Þ

where Ew is the minimum allowable value of the specific
mechanical energy (corresponding to a given radial dis-
tance r) that is obtained from Eq. (8) by enforcing the
condition [19] u2

Z0, viz.

Ew ¼
m�p0

2r2
�
m�
r

ð12Þ

The spacecraft heliocentric motion is better described
using a modified energy plane ð ~E , ~rÞ, which results from
the introduction of the following dimensionless terms:

~E9 E
m�=r0

, ~Ew9
Ew

m�=r0
, ~r9log

r

r0

� �
ð13Þ

Bearing in mind Eq. (6), the expressions for ~E and ~Ew are

~E ¼ e2
0�1

2ð1þe0 cos y0Þ
þb

p0

r�ð1þe0 cos y0Þ
~r ð14Þ

~Ew ¼
ð1þe0 cos y0Þ

2
expð�2~rÞ�expð�~rÞ ð15Þ

and Eq. (11) becomes

~EZ ~Ew ð16Þ

From Eq. (15) it is clear that the shape of the potential
well boundary ~Ew ¼ ~Ewð~rÞ depends both on the parking
orbit characteristics (through e0) and on the initial space-
craft position y0, but it is independent of the E-sail
performance (quantified through the parameter b). On
the contrary, for a circular parking orbit (e0 ¼ 0) the
function ~Ew is independent of y0.
Please cite this article as: G. Mengali, et al., A graphical approa
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Moreover, Eq. (14) states that the dimensionless spe-
cific mechanical energy is a linear function of ~r , and its
slope is proportional to the dimensionless characteristic
acceleration b. For a circular parking orbit (~r ¼ 0), the
initial value of the dimensionless specific mechanical
energy is simply ~E ¼�1=2.

A graphical interpretation of Eqs. (14) and (15) pro-
vides valuable insights into the spacecraft heliocentric
trajectory without the need of integrating the equations
of motion (1)–(3). This matter is now illustrated in detail
with the aid of a number of mission applications.

3. Minimum propulsive acceleration to escape

As a first application of the previous concepts to an
E-sail mission analysis, consider the problem of finding the
minimum propulsive acceleration required to escape from
the Sun when the propulsion system is operating for the
whole mission duration. This is a classical problem that has
been extensively studied in the literature, especially under
the assumption of constant propulsive, outward, accelera-
tion [11,13,19]. Here the minimum value of a� [equiva-
lently, the minimum b, see Eq. (5)] will be found graphically
in the energy plane. The two cases of circular or elliptic
parking orbit will be discussed separately.

3.1. Circular parking orbit

The shape of the potential well ~Ew ¼ ~Ewð~rÞ for a circular
parking orbit of radius r0 � p0 is shown in Fig. 1. Recall
that the points below the potential well boundary belong
to a forbidden region (shaded area in Fig. 1) where the
spacecraft motion cannot take place.

According to Eq. (14), at the initial time t0 the space-
craft position in the energy plane is represented by the
point P0 ¼ ð0,�1=2Þ, and the spacecraft radial velocity
component at t0 is zero. When the propulsion system is
switched-on (t4t0), the spacecraft at first increases both its
specific energy ~E and its distance from the Sun ~r moving
along the straight line defined by Eq. (14). This line will be
ch to electric sail mission design with radial thrust, Acta
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Fig. 2. Spacecraft trajectory for b¼ b% , starting from a circular parking

orbit of radius r0.
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referred to as ‘‘energy line’’, and its slope is proportional to
the dimensionless characteristic acceleration b. The space-
craft motion corresponds to one of the following three cases.

3.1.1. Case a

The energy line, with a slope b%r0=r�, is tangent to the
potential well boundary at point Pt ¼ ð~rt , ~E tÞ, see Fig. 1. In
this case, the pair ð~rt ,b

%

Þ is solution of the system of
algebraic equations

~E ¼ ~Ew \
@ ~E
@~r
¼
@ ~Ew

@~r
ð17Þ

or, with the aid of Eqs. (14) and (15)

2~r t expð�~rtÞ½1�expð�~rtÞ�1¼ expð�~rtÞ½expð�~rtÞ�2� ð18Þ

b%

¼
r�
r0

� �
exp ð�~rtÞ½1�exp ð�~rtÞ� ð19Þ

whose solution is

~rt C1:256431, b%C0:203632
r�
r0

� �
ð20Þ

Substituting ~rt from (20) into Eq. (14), the energy at Pt is
~E t C�0:244150.

The spacecraft motion can now be qualitatively
described as follows. When the propulsion system (whose
dimensionless characteristic acceleration is b%, see Eq. (20))
is switched-on, the Sun–spacecraft distance increases fol-
lowing the segment P0Pt . At time tt the spacecraft reaches
the point Pt whose distance from the Sun is

rt9r0 expð~rtÞC3:512862r0 ð21Þ

here the spacecraft radial velocity component is zero,
because Pt belongs to the potential well boundary, while
its radial acceleration component €rt9€rðrtÞ is obtained from
Eq. (4) with the substitution b¼ b% and r¼ rt . It can be
verified that €rt ¼ 0. Therefore, the spacecraft reaches Pt with
zero velocity and zero acceleration in the radial direction.
Accordingly, for tZtt the spacecraft tracks a circular, non-
Keplerian [6,20], orbit of radius rt with a constant velocity
v¼

ffiffiffiffiffiffiffiffiffiffiffim�p0
p

=rt , as is shown in Fig. 2.
From Eq. (21), the orbital period Tt of the non-Kepler-

ian orbit is

Tt ¼
2pffiffiffiffiffiffiffiffiffiffiffiffiffi
m�=r3

0

q expð2~rtÞ ð22Þ

A linear stability analysis reveals that this non-Keplerian
orbit is unstable. In fact, from Eq. (4), the derivative of the
radial acceleration component is

@€r

@r
¼
m�
r2

0

½2 expð�2~rÞ�3 expð�3~rÞ�bðr0=r�Þ expð�~rÞ� ð23Þ

Therefore, when b¼ b% and ~r ¼ ~rt , Eq. (23) states that
@€r=@rC0:0349m�=r2

040.
To summarize, in this case the spacecraft heliocentric

trajectory presents a single perihelion point (P0 in the
energy plane) at a distance r0 from the Sun, and the
maximum attainable distance (rt) depends linearly on r0.

3.1.2. Case b

When the slope of the energy line is sufficiently high
(that is, b4b%), P0 is the only intersection point between
Please cite this article as: G. Mengali, et al., A graphical approa
Astronautica (2012), http://dx.doi.org/10.1016/j.actaastro.201
the energy line and the potential well boundary, see Fig. 1.
In this case, for all t4t0, the spacecraft is pushed away
from the Sun and eventually reaches the escape condition
~E ¼ 0 at a distance [see Eqs. (13) and (14)]

re ¼ r0 exp
r�

2br0

� �
ð24Þ

If the mission requirement is to reach a given hyperbolic
excess velocity V1 with respect to the Sun, the E-sail can
be jettisoned when the Sun–spacecraft distance is

r¼ r0 exp
r�V2

1þm�r�=r0

2m�b

 !
ð25Þ

In this case, P0 is the only trajectory point in which the
radial velocity component is zero and r0 is the corre-
sponding perihelion distance. Fig. 3 shows the spacecraft
heliocentric trajectory when b¼ 1:1b%C0:223995r�=r0.
Note that, according to Eq. (24), the escape condition
occurs at a distance reC9:3r0 from the Sun.

3.1.3. Case c

The last case is obtained when the energy line inter-
cepts the potential well boundary at three points, P0,
Pa ¼ ð~ra, ~EaÞ and Pb ¼ ð~rb, ~EbÞ, as is shown in Fig. 1. This
situation is representative of a low-performance propul-
sion system, that is, an E-sail with a low characteristic
acceleration (bob%). The values of ~ra and ~rb, with
0oraort orb, are two of the three real solutions of the
nonlinear equation ~E ¼ ~Ew, where ~E is given by Eq. (14)
and ~Ew by Eq. (15). The nonlinear equation ~E ¼ ~Ew in the
unknown ~r can be solved numerically, and the solution
~r ¼ 0 can be discarded as it coincides with r0. The least of
the remaining two solutions corresponds to ~ra, that is, the
aphelion distance. To simplify the succeeding spacecraft
trajectory analysis, Fig. 4 shows the values of aphelion
distance ra=r0 as a function of the dimensionless char-
acteristic acceleration bob%. The same figure also shows
ch to electric sail mission design with radial thrust, Acta
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Fig. 3. Spacecraft trajectory for b¼ 1:1b% C0:223995r�=r0, starting from

a circular parking orbit of radius r0.

Fig. 4. Aphelion distance and radial component of acceleration as a

function of the dimensionless characteristic acceleration for a circular

parking orbit of radius r0. (a) Aphelion distance, (b) radial component of

acceleration.

Please cite this article as: G. Mengali, et al., A graphical approa
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the spacecraft radial acceleration component, which can
be obtained from Eq. (4) when r¼ ra.

Fig. 4(b) shows that €rao0 for b 2 ð0,b%

Þ, whereas
€ra ¼ 0 when b¼ f0,b%

g. The special case of b¼ 0 is of
scarce importance, as it corresponds to a spacecraft with-
out any propulsion system. In that case the spacecraft
tracks the initial circular parking orbit and the energy line
reduces to the point P0.

The spacecraft motion can be described as follows.
Assuming that b 2 ð0,b%

Þ, for t4t0 the spacecraft increases
its distance from the Sun until, at time ta, it reaches a
distance raort (point Pa of Fig. 1). During this phase the
spacecraft tracks, in the energy plane, the segment P0Pa .
Because Pa belongs to the potential well boundary, at Pa the
spacecraft radial velocity component is zero, but the radial
acceleration component is negative (see Fig. 4(b)). Therefore
the spacecraft is subjected to a net inward force, proportional
to €ra, that curves the trajectory towards the Sun. As a result
the distance from the Sun starts decreasing and the space-
craft tracks backwards the segment P0Pa until it reaches P0

again (at time t1). Note that the spacecraft polar angle
y19yðt1Þ is, in general, different from y0þ2kp, where k is
a positive integer. For t4t1 the motion in the energy plane
repeats, that is, the spacecraft increases its distance from the
Sun until ra and so on. In other words the spacecraft oscillates
indefinitely, in the energy plane, along the segment P0Pa .
Clearly, the point Pb cannot be reached because the segment
PaPb lies in the forbidden region. Therefore, the value of b%,
given by Eq. (20), is the minimum dimensionless character-
istic acceleration required to escape from the circular parking
orbit of radius r0. In addition, rt is the maximum aphelion
distance of a closed orbit when the propulsion system is on.
When viewed with respect to a heliocentric reference frame,
the spacecraft trajectory is constrained within the region
between the two circles of radius r0 (perihelion) and ra

(aphelion). For example Fig. 5 illustrates the spacecraft
trajectory for b¼ 0:9b%C0:183269r�=r0, in which the aphe-
lion distance is raC2:06r0, a value which is in agreement
with Fig. 4(a).
Fig. 5. Spacecraft trajectory for b¼ 0:9b% C0:183268r�=r0, starting from

a circular parking orbit of radius r0.

ch to electric sail mission design with radial thrust, Acta
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Fig. 6. Potential well boundary and starting point P0, for three values of

the polar angle y0, starting from an elliptic orbit of eccentricity e0¼0.3.

Fig. 7. Optimal performance for an escape mission as a function of

the parking orbit characteristics ðp0 ,e0Þ and the initial polar angle y0.

(a) Dimensionless characteristic acceleration b% , (b) non-Keplerian orbit

dimensionless radius ~r t .
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3.2. Elliptic parking orbit

If the parking orbit is elliptic, that is, e0 2 ½0;1Þ, both
the potential well boundary and the energy line location
depend on the starting polar angle y0, see Eqs. (14) and
(15). For a given value of e0 the position of P0 in the
energy plane changes with y0 as is shown in Fig. 6 for
e0¼0.3. Note that when y0 2 f0;180g1 the point P0 belongs
to the potential well boundary, whereas for y0 2 ð0;180Þ1
the point P0 is inside the allowable region.

For a given quadruple ðp0,e0,y0,bÞ the potential well
boundary and the energy line are univocally defined, and
the analysis of the spacecraft motion coincides with that
described in the last section. In particular, the minimum
value b% of the dimensionless characteristic acceleration
required to escape from the Sun is now a function of the
triplet ðp0,e0,y0Þ. Bearing in mind Eqs. (14) and (15),
the numerical solutions of Eq. (17) have been summarized
in Fig. 7 where, for symmetry reasons, the analysis of the
initial polar angle range has been confined to y0 2 ½0;180�1.

A few remarks are in order. For a circular parking orbit,
both b% and ~rt are constant with respect to the starting
polar angle y0, and their values are in agreement with Eq.
(20). More important, Fig. 7(a) shows that, for a given
value of the pair ðp0,e0Þ, the parameter b% increases with
y0. Therefore, for a given parking orbit, the minimum
value of the dimensionless characteristic acceleration
b%

min9min½b%

ðy0Þ� is obtained when y0 ¼ 0, that is, when
the propulsion system is switched-on at the initial peri-
helion [12]. Fig. 8 shows the required value of b%

min as a
function of p0 and e0.

The quantity b%

minp0=r� is almost linear with e0, and
can be approximated (with errors less than 0:6%) by the
function

b%

min

p0

r�
C�0:2036e0þ0:2036 ð26Þ

Fig. 8 and Eq. (26) reveal that b%

min-0 as e0-1. However
this corresponds to the special case of a parabolic parking
orbit and, indeed, the spacecraft reaches the escape
Please cite this article as: G. Mengali, et al., A graphical approa
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condition at t¼0 without the need of any propulsion
system.

As an example, if the elliptic parking orbit coincides
with Earth’s heliocentric orbit of semimajor axis a0 ¼ 1 AU
and eccentricity e0 ¼ 0:0167102, one obtains that b%

minC
0:201 (the characteristic acceleration is 1:19 mm=s2).
Starting instead from Mercury’s heliocentric orbit (a0 ¼

0:3870989 AU and e0 ¼ 0:2056307) the value of b%

min

increases to about 0.449 and the minimum characteristic
acceleration required to escape is 2:662 mm=s2.

4. Attainment of a given distance from the Sun

As a second practical application of the potential well’s
concept consider now the problem of finding the mini-
mum characteristic acceleration required to reach a pre-
scribed distance R from the Sun. Without any loss of
generality, a circular parking orbit of radius r0 is assumed.
Indeed, the extension to an elliptic parking orbit is
straightforward. Unlike the previous analysis, in this case
the propulsion system can be switched-off one time along
ch to electric sail mission design with radial thrust, Acta
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Fig. 8. Minimum dimensionless characteristic acceleration b%

min

required to escape from the Sun, as a function of the parking orbit

characteristics p0 and e0.

Fig. 9. Optimal strategy to reach a (dimensionless) distance ~R 2 ð0, ~r t �,

starting from a circular parking orbit.

Fig. 10. Optimal transfer trajectory to reach a distance R¼ 1:524 AU,

starting from a circular parking orbit of radius r0 ¼ r� .

Fig. 11. Optimal strategy to reach a (dimensionless) distance ~R4 ~r t ,

starting from a circular parking orbit.
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the trajectory to model a situation in which the E-sail is
jettisoned. To solve the problem, it is useful to distinguish
between the following three cases.

4.1. Case a

Assume first that ~R 2 ð0, ~rt�, where ~r t is given by Eq.
(20). In the energy plane the parking orbit is defined by
the point P0 ¼ ð0,�1=2Þwhile the target point belongs to a
vertical line of equation ~r ¼ ~R. The dimensionless specific
mechanical energy at the intersection point PR ¼ ð

~R, ~ERÞ

between this vertical line and the potential well boundary
is obtained from Eq. (15)

~ER ¼
1
2 expð�2 ~RÞ�expð� ~RÞ ð27Þ

with ~ER4�1=2 for ~R40. Because for t4t0 the spacecraft
tracks an energy line whose slope is proportional to the
dimensionless characteristic acceleration [see Eq. (14)],
the value of bmin is

bmin ¼
r�
~Rr0

ð ~ERþ1=2Þ �
r�

2 ~Rr0

½expð�2 ~RÞ�2 expð� ~RÞþ1�

ð28Þ

In other terms, when b¼ bmin the spacecraft moves along
the segment P0PR , and reaches the target distance ~R at the
aphelion of the transfer trajectory, as is shown in Fig. 9.

For example, assume that R¼ 1:524 AU (a value corre-
sponding to the Sun–Mars mean distance), and a parking
circular orbit of radius r0 � r�. In this case ~RC0:421338 and,
from Eq. (28), bminC0:140291, that is, a�C0:832 mm=s2.
The spacecraft transfer trajectory is shown in Fig. 10.

4.2. Case b

If ~R4 ~rt , a portion of the segment P0PR belongs to the
forbidden region of the energy plane and the previous
transfer strategy fails. In this case, as PR is on the right of
Pt (see Fig. 11), the optimal solution is simply the energy
Please cite this article as: G. Mengali, et al., A graphical approach to electric sail mission design with radial thrust, Acta
Astronautica (2012), http://dx.doi.org/10.1016/j.actaastro.2012.03.022
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Fig. 12. Optimal transfer trajectory to reach a distance R¼ 5:2 AU,

starting from a circular parking orbit of radius r0 ¼ r�.

Fig. 13. Optimal strategy to reach a (dimensionless) distance ~R 2

ðlog ð1=2Þ,0Þ as a function of ~ra , starting from a circular parking orbit.

(a) ~r a o ~r t , (b) ~ra 4 ~r t .
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line that passes through P0 and Pt. From Eq. (20), the
minimum value of the dimensionless characteristic accel-
eration is

bmin40:203632
r�
r0

� �
ð29Þ

Assuming R¼ 5:2 AU, equal to the Sun–Jupiter mean
distance, and r0 � r�, the dimensionless distance is
~RC1:648658 and the minimum characteristic accelera-
tion is a�C1:2087 mm=s2. The spacecraft transfer trajec-
tory is shown in Fig. 12.

4.3. Case c

Finally, assume that the target distance is less than r0,
or ~Ro0. In this case a transfer without an E-sail jettison is
unfeasible, because the propulsion system provides an
outward radial thrust only. However the target distance
can be reached using a Keplerian orbit whose perihelion
distance is rprR. Because the spacecraft can be trans-
ferred only towards Keplerian orbits whose semilatus
rectum is p0 � r0, the equation rprR represents a con-
straint on the minimum aphelion radius ra of the candi-
date Keplerian orbit, that is

raZ
r0R

2R�r0
ð30Þ

In particular, Eq. (30) states that the spacecraft cannot
reach a distance from the Sun less than r0=2.

Assuming R4r0=2 (that is, ~R4 logð1=2ÞC�0:6931),
from a geometric viewpoint the optimal mission strategy
corresponds to transfer the spacecraft to a Keplerian orbit
whose perihelion radius rp is equal to R. For a given value
of rp ¼ R, the corresponding Keplerian orbit is represented,
in the energy plane, by a horizontal segment ranging from
Pp ¼ ð

~R, ~ERÞ to Pa ¼ ð~ra, ~ERÞ, see Fig. 13, where

~ra9log
R

2R�r0

� �
ð31Þ
Please cite this article as: G. Mengali, et al., A graphical approa
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and ~ER is given by Eq. (27). Note that Pp and Pa map, in the
energy plane, the perihelion and the aphelion point of the
Keplerian orbit, respectively.

The minimum value of the dimensionless character-
istic acceleration required to reach a point of the segment
PpPa depends on the horizontal position of Pa, that is, on
the value of ~ra. In fact, for ~rar ~rt , with ~rt given by Eq. (21),
the minimum value of b corresponds to the transfer orbit
that reaches the Keplerian orbit at its aphelion Pa, viz.

bmin ¼
r�
~rar0
ð ~ERþ1=2Þ �

r�
2~rar0

½expð�2 ~RÞ�2 expð� ~RÞþ1�

ð32Þ

The E-sail is jettisoned exactly at a distance ra from the Sun,
where ra is given by the right hand side of Eq. (30). This
strategy is summarized in Fig. 13(a). For example, if
R¼ 0:723 AU, equal to the Sun–Venus mean distance, and
r0 � r�, the target distance is ~RC�0:324346 and ~raC
0:483090o ~rt . From Eq. (32), the minimum dimensionless
characteristic acceleration is bminC0:1519 (that is a�C
0:901 mm=s2), and the spacecraft transfer trajectory is
ch to electric sail mission design with radial thrust, Acta
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Fig. 14. Optimal transfer trajectory to reach a distance R¼ 0:723 AU,

starting from a circular parking orbit of radius r0 ¼ r�.

Fig. 15. Optimal transfer trajectory to reach a distance R¼ 0:55 AU,

starting from a circular parking orbit of radius r0 ¼ r� .
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shown in Fig. 14 along with the corresponding Keplerian
orbit.

As was discussed in Case b, when ~ra4 ~rt the minimum
dimensionless characteristic acceleration is equal to b%,
see Eq. (29), and the E-sail is jettisoned at a distance
rjora. This situation is illustrated in Fig. 13(b) and the
jettison distance is

rj ¼ r0 exp
~ERþ1=2

b%r0=r�

 !
� r0 exp

expð�2 ~RÞ�2 expð� ~RÞþ1

2b%r0=r�

 !

ð33Þ

For example, if r0 � r� and R¼ 0:55 AU ( ~RC�0:597837),
the E-sail jettison distance is rjC5:174 AU and the trans-
fer trajectory is shown in Fig. 15.
5. Reaching a Keplerian orbit of given period

The third practical application of the potential well’s
concept is the study of the minimum characteristic
acceleration bmin required to reach a heliocentric Kepler-
ian closed orbit of given period Tk. By assumption, the
target Keplerian orbit is coplanar to the circular parking
orbit of radius r0. Moreover, the E-sail can be jettisoned at
a suitable point of the transfer trajectory.

As discussed in the previous section, the target Kepler-
ian orbit in the energy plane is represented by a horizon-
tal segment whose dimensionless specific mechanical
energy ~E k is

~E k9�
r0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

km�=ð4p2Þ
3

q ð34Þ

The segment endpoints, Pp ¼ ð~rp, ~E kÞ and Pa ¼ ð~ra, ~E kÞ, map
the target Keplerian orbit perihelion and aphelion points,
respectively, where ~rp ¼ logðrp=r0Þ and ~ra ¼ logðra=r0Þwith

rp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

km�=ð4p2Þ
3

q
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

km�=ð4p2Þ
3

q
vuut

0
B@

1
CA ð35Þ
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ra ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

km�=ð4p2Þ
3

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

km�=ð4p2Þ
3

q
vuut

0
B@

1
CA ð36Þ

In fact, because the semilatus rectum pk of the target
Keplerian orbit is equal to r0, the semimajor axis ak and
the eccentricity ek of the final orbit are obtained as

ak ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

km�=ð4p2Þ
3

q
ð37Þ

ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1�

r0

ak

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

km�=ð4p2Þ
3

q
vuut ð38Þ

Note that the constraint pk ¼ r0 implies that a transfer

towards an orbit of period TkoT092p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r3

0=m�
q

(or

~E ko�1=2) is infeasible. Therefore assume that Tk4T0,
as Tk ¼ T0 corresponds to a situation in which at time t0

the spacecraft is already on the target Keplerian orbit. The
problem can be solved in the energy plane with the aid of
the two cases illustrated in Fig. 16.
5.1. Case a

The dimensionless specific mechanical energy of the
target Keplerian orbit ranges in the interval ~E k 2 ð�1=2, ~E t�,
where ~E t C�0:244150 is the ordinate of point Pt. In this case
~rar ~rt and, as was discussed in the previous section, the
optimal strategy is to reach the Keplerian orbit aphelion
where the E-sail is jettisoned. The minimum required
dimensionless characteristic acceleration is

bmin ¼
r�
~rar0
ð ~E kþ1=2Þ ð39Þ

and the jettison distance is rj¼ra, see Eq. (36).
ch to electric sail mission design with radial thrust, Acta
2.03.022

dx.doi.org/10.1016/j.actaastro.2012.03.022
dx.doi.org/10.1016/j.actaastro.2012.03.022
dx.doi.org/10.1016/j.actaastro.2012.03.022


Fig. 16. Optimal strategy to reach a heliocentric (closed) Keplerian orbit

of given period, starting from a circular parking orbit. (a) Case a and

(b) Case b.

Table 1
Optimal performance to obtain a mean motion orbital resonance with

the parking orbit.

Tk=T0 rp=r0 ra=r0 bminr0=r� rj=r0 Case

2 0.6218 2.5530 0.1974 2.5530 a

3 0.5812 3.5790 0.2036 3.5786 b

4 0.5629 4.4768 0.2036 4.3972 b

5 0.5521 5.2959 0.2036 5.0313 b

6 0.5450 6.0589 0.2036 5.5388 b

7 0.5398 6.7788 0.2036 5.9560 b

8 0.5359 7.4641 0.2036 6.3063 b

9 0.5328 8.1207 0.2036 6.6056 b

10 0.5303 8.7529 0.2036 6.8648 b

3:2 0.6726 1.9481 0.1776 1.9481 a

5:2 0.5966 3.0874 0.2027 3.0874 a

7:2 0.5706 4.0398 0.2036 4.0159 b

9:2 0.5569 4.8945 0.2036 4.7330 b

4:3 0.7053 1.7175 0.1613 1.7175 a

5:3 0.6505 2.1609 0.1873 2.1609 a

7:3 0.6035 2.9149 0.2017 2.9149 a

10:3 0.5738 3.8891 0.2036 3.8769 b

1 The catalog of NEAs orbital elements is available online at http://

newton.dm.unipi.it/neodys/ [retrieved 14 January 2011].
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5.2. Case b

The dimensionless specific mechanical energy of the
target Keplerian orbit ranges in the interval ~E k 2 ð

~E t ,0Þ,
that is, the dimensionless aphelion radius is greater than
~rt . In this case the optimal strategy requires that bmin ¼ b%

[see Eq. (20)], and the jettison distance rj is given by

rj ¼ r0 exp
~E kþ1=2

b%r0=r�

 !
ð40Þ

The previous relationships are useful for a preliminary
mission analysis whose aim is to reach a Keplerian orbit
in mean motion orbital resonance with the parking one.
The transfer trajectory characteristics and the E-sail
required performances have been summarized in
Table 1 for some values of resonance ratio Tk=T0. The
resonance ratio corresponds to the number of spacecraft
revolutions for one revolution of the given celestial body
around the Sun. Note that for a given value of r0, both the
dimensionless characteristic acceleration bmin and the
Please cite this article as: G. Mengali, et al., A graphical approa
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jettison distance rj increase with the resonance ratio
Tk=T0. In fact, an increment of the period Tk increases
both ~E k and ra.

6. Nodal flyby missions to NEAs

The last mission application is related to a nodal flyby
mission [21,22] towards a Near Earth Asteroid (NEA)
whose population, calculated at mid-January 2011, con-
sists of 7600 bodies.1 In such a mission scenario, a
spacecraft that moves in the ecliptic plane performs a
sequence of close encounters with NEAs. To this end, the
spacecraft is transferred to a Keplerian orbit in mean
motion orbital resonance with the target asteroid’s orbit.
Accordingly, a flyby occurs in one of the two nodes of the
asteroid’s heliocentric orbit, that is, when the Sun–space-
craft distance is r (ascending node) or r (descending
node) with

r ¼
anð1�e2

nÞ

1þen cos on
, r ¼

anð1�e2
nÞ

1þen cos ðp�onÞ
ð41Þ

where an is the semimajor axis, en is the eccentricity, and
on is the argument of periapsis of the target asteroid’s
heliocentric orbit.

The analysis of the problem in the energy plane detects
the optimal strategy and provides an estimate of the
minimum characteristic acceleration required to perform
the transfer phase of the mission. To reduce the problem
complexity, the ephemeris constraint is neglected, and a
circular parking orbit of radius r0 ¼ r� is assumed. In
other terms, the problem is now to find the minimum

value bmin and the jettison distance rj required to transfer
the spacecraft from a circular parking orbit of radius r� to
an elliptic heliocentric orbit of given resonance ratio

q9Tk=Tn, where Tn ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3

n=m�
q

is the asteroid’s orbital

period. For a given pair ðq,TnÞ, the optimal dimensionless
ch to electric sail mission design with radial thrust, Acta
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Fig. 17. Number of unreachable asteroids as a function of the resonance

ratio qZ1.

Fig. 18. Optimal performances for a nodal flyby mission towards a NEA,

starting from a circular parking orbit of radius r0 ¼ r�. (a) Dimensionless

characteristic acceleration and (b) Jettison distance.

Table 2
Number of reachable NEAs as a function of a� and q.

Characteristic acceleration q¼1 q¼3:2 q¼2

a�r0:07 mm=s2 1 0 0

a�r0:2 mm=s2 5 2 0

a�r0:1 mm=s2 2 0 0

a�r0:3 mm=s2 19 7 1

a�r0:4 mm=s2 45 15 2

a�r0:5 mm=s2 88 25 3
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characteristic acceleration bmin and the corresponding
jettison distance rj are obtained with the approach
described in the previous section.

Note that the constraint on the semilatus rectum
states that the transfer is infeasible if qoT0=Tn. Moreover,
for a given value of q4T0=Tn, the flyby is impossible if
fr ,r g \ ½rp,ra� ¼ f0g, where rp and ra, that is, the perihe-
lion and aphelion distances of the Keplerian orbit, are
given by Eqs. (35) and (36) with Tk ¼ qTn.

The number of unreachable asteroids decreases with
the resonance ratio q, as is shown in Fig. 17. For example,
when q¼1 about 824 asteroids (10.8% of the entire
population) are not reachable, whereas when q¼2 the
number of ‘‘forbidden’’ asteroids reduces to 33 (0.43%
only of the entire population). The horizontal asymptote
in Fig. 17 shows that a nodal flyby mission is impossible
for a set of 16 NEAs. For these asteroids the value of both
r and r is less than r0=2¼ 0:5 AU.

Fig. 18 shows the minimum dimensionless character-
istic acceleration bmin and the jettison distance rj as a
function of the resonance ratio q for the asteroids popula-
tion. Note that the cumulative percent in the abscissa of
Fig. 18 refers to the actually reachable asteroids for a
given value of q, see also Fig. 17.

Fig. 18(a) shows that the required value of bmin

increases with q and for q43 nearly all of the asteroids
population is reachable with an E-sail of bmin ¼ b%. The
resonance ratio q is therefore an important parameter for
assessing the E-sail capabilities in this mission type. In
fact, when a�r0:5 mm=s2 (or br0:0843) the number of
reachable asteroids is strongly dependent on the value of
q, as is shown in Table 2.
7. Conclusions

A new graphical approach for the preliminary mission
analysis of an E-sail spacecraft has been illustrated.
Assuming that the thrust is always oriented radial with
respect to the Sun–spacecraft direction, the space vehicle
is subjected to a propulsive, outward, acceleration that
varies inversely proportional with the distance from the
Please cite this article as: G. Mengali, et al., A graphical approa
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Sun. The assumption of radial thrust not only is a means
to reduce the problem mathematical complexity, but
could also be a potentially useful concept from an engi-
neering viewpoint. Indeed, while in principle the E-sail
can be slightly inclined and thereby produce an off-radial
thrust, maintaining the sail nominal plane orthogonal to
the solar wind flow during the whole mission would
simplify the design of some spacecraft elements as, for
example, thermal and high voltage subsystems. Therefore,
it cannot be excluded that a purely radial thrust could be,
in practice, an optimal engineering solution, or that if the
ch to electric sail mission design with radial thrust, Acta
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E-sail nominal plane is inclined, a useful starting point for
mission analysis could be provided by the purely radial
propulsive acceleration approximation. In this scenario,
the spacecraft trajectory is conveniently described in the
energy plane, in which the feasible motion is constrained
by the potential well concept. With a suitable choice of
the independent variables, a new definition of energy
plane and potential well has been introduced to obtain a
problem solution through a graphical approach. In parti-
cular, the main orbital parameters, as the maximum and
minimum attainable distance from the Sun, can be calcu-
lated by simply intersecting the potential well boundary
with a straight line whose slope is proportional to the
E-sail characteristic acceleration. As a result, a number of
interesting problems involving an E-sail subject to a
purely radial thrust can be solved using a semi-analytical
approach, without the need to resort to lengthy numerical
simulations.
Acknowledgments

This research was financed in part within the European
Community’s Seventh Framework Programme ([FP7/
2007-2013]) under grant agreement number 262733.

References

[1] J.A. Kechichian, Optimal low-thrust transfer using variable bounded
thrust, Acta Astronaut. 36 (7) (1995) 357–365, http://dx.doi.org/
10.1016/0094-5765(95)00112-3.

[2] G. Mengali, A.A. Quarta, Fuel-optimal, power-limited rendezvous
with variable thruster efficiency, J. Guidance Control Dyn. 28 (6)
(2005) 1194–1199, http://dx.doi.org/10.2514/1.12480.

[3] M. Otten, C.R. McInnes, Near minimum-time trajectories for solar
sails, J. Guidance Control Dyn. 24 (3) (2001) 632–634, http://dx.doi.
org/10.2514/2.4758.

[4] G. Mengali, A.A. Quarta, Optimal control laws for axially symmetric
solar sails, J. Spacecr. Rockets 42 (6) (2005) 1130–1133, http://dx.d
oi.org/10.2514/1.17102.

[5] P. Janhunen, The electrical sail—a new propulsion method which
may enable fast missions to the outer solar system, J. Br. Inter-
planet. Soc. 61 (2008) 322–325.
Please cite this article as: G. Mengali, et al., A graphical approa
Astronautica (2012), http://dx.doi.org/10.1016/j.actaastro.201
[6] G. Mengali, A.A. Quarta, Non-Keplerian orbits for electric sails,
Celestial Mech. Dyn. Astron. 105 (1–3) (2009) 179–195, http://dx.
doi.org/10.1007/s10569-009-9200-y.

[7] G. Mengali, A.A. Quarta, P. Janhunen, Electric sail performance
analysis, J. Spacecr. Rockets 45 (1) (2008) 122–129, http://dx.doi.
org/10.2514/1.31769.

[8] G. Mengali, A.A. Quarta, P. Janhunen, Considerations of electric
sailcraft trajectory design, J. Br. Interplanet. Soc. 61 (2008) 326–329.

[9] A.A. Quarta, G. Mengali, P. Janhunen, Optimal interplanetary ren-
dezvous combining electric sail and high thrust propulsion system,
Acta Astronaut. 68 (5–6) (2011) 603–621, http://dx.doi.org/
10.1016/j.actaastro.2010.01.024.

[10] A.A. Quarta, G. Mengali, Electric sail missions to potentially hazar-
dous asteroids, Acta Astronaut. 66 (9–10) (2010) 1506–1519,
http://dx.doi.org/10.1016/j.actaastro.2009.11.021.

[11] H.S. Tsien, Take-off from satellite orbit, J. Am. Rocket Soc. 23 (4)
(1953) 233–236.

[12] G. Mengali, A.A. Quarta, Escape from elliptic orbit using constant
radial thrust, J. Guidance Control Dyn. 32 (3) (2009) 1018–1022, htt
p://dx.doi.org/10.2514/1.43382.

[13] J.E. Prussing, V.L. Coverstone, Constant radial thrust acceleration
redux, J. Guidance Control Dyn. 21 (3) (1998) 516–518, http://dx.doi.
org/10.2514/2.7609.

[14] P. Janhunen, Electric sail for spacecraft propulsion, J. Propul. Power
20 (4) (2004) 763–764, http://dx.doi.org/10.2514/1.8580.

[15] P. Janhunen, A. Sandroos, Simulation study of solar wind push on a
charged wire: basis of solar wind electric sail propulsion, Ann.
Geophys. 25 (3) (2007) 755–767, http://dx.doi.org/10.5194/angeo-
25-755-2007.

[16] P. Janhunen, The electric solar wind sail status report, in: European
Planetary Science Congress 2010, Rome, Italy, vol. 5, 2010, Paper
EPSC 2010-297.

[17] C.R. McInnes, Solar Sailing: Technology, Dynamics and Mission
Applications, Springer-Praxis Series in Space Science and Technol-
ogy, Springer-Verlag, Berlin, 1999, pp. 46–54, ISBN: 3-540-21062-8.

[18] J.L. Wright, Space Sailing, Gordon and Breach Science Publisher,
Berlin, 1992, pp. 223–226, ISBN: 2-881-24842-X.

[19] R.H. Battin, An Introduction to the Mathematics and Methods of
Astrodynamics, revised ed., AIAA Education Series, AIAA, New
York, 1999, pp. 408–415, ISBN: 1-563-47342-9.

[20] R.J. McKay, M. Macdonald, J. Biggs, C.R. McInnes, Survey of highly
non-Keplerian orbits with low-thrust propulsion, J. Guidance
Control Dyn. 34 (3) (2011) 645–666, http://dx.doi.org/10.2514/
1.52133.

[21] E. Perozzi, L. Casalino, G. Colasurdo, A. Rossi, G.B. Valsecchi,
Resonant fly-by missions to near earth asteroids, Celestial Mech.
Dyn. Astron. 83 (1–4) (2002) 49–62, http://dx.doi.org/10.1023/
A:1020122511548.

[22] R.P. Binzel, E. Perozzi, A.S. Rivkin, A. Rossi, A.W. Harris, S.J. Bus,
G.B. Valsecchi, S.M. Slivan, Dynamical and compositional assessment of
near-Earth object mission targets, Meteorit. Planet. Sci. 39 (3) (2004)
351–366, http://dx.doi.org/10.1111/j.1945-5100.2004.tb00098.x.
ch to electric sail mission design with radial thrust, Acta
2.03.022

dx.doi.org/10.1016/0094-5765(95)00112-3
dx.doi.org/10.2514/1.12480
dx.doi.org/10.2514/2.4758
dx.doi.org/10.2514/1.17102
dx.doi.org/10.1007/s10569-009-9200-y
dx.doi.org/10.2514/1.31769
dx.doi.org/10.1016/j.actaastro.2010.01.024
dx.doi.org/10.1016/j.actaastro.2009.11.021
dx.doi.org/10.2514/1.43382
dx.doi.org/10.2514/2.7609
dx.doi.org/10.2514/1.8580
dx.doi.org/10.5194/angeo-25-755-2007
dx.doi.org/10.5194/angeo-25-755-2007
dx.doi.org/10.2514/1.52133
dx.doi.org/10.2514/1.52133
dx.doi.org/10.1023/A:1020122511548
dx.doi.org/10.1023/A:1020122511548
dx.doi.org/10.1111/j.1945-5100.2004.tb00098.x
dx.doi.org/10.1016/j.actaastro.2012.03.022
dx.doi.org/10.1016/j.actaastro.2012.03.022
dx.doi.org/10.1016/j.actaastro.2012.03.022

	A graphical approach to electric sail mission design with radial thrust
	Introduction
	E-sail motion with radial thrust
	Minimum propulsive acceleration to escape
	Circular parking orbit
	Case a
	Case b
	Case c

	Elliptic parking orbit

	Attainment of a given distance from the Sun
	Case a
	Case b
	Case c

	Reaching a Keplerian orbit of given period
	Case a
	Case b

	Nodal flyby missions to NEAs
	Conclusions
	Acknowledgments
	References




